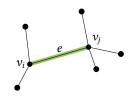


Grundlagen der Informatik und Programmierung 2

Graphen

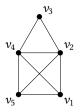
weitere Begriffe

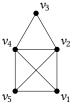
Prof. Dr. Tom Vierjahn


Visual Computing (https://vc.w-hs.de)
Fachbereich Wirtschaft und Informationstechnik
Campus Bocholt

Sommersemester 2020

Grundbegriffe




Grundbegriffe

▶ Ein Graph H = (V', E') heißt Teilgraph, Untergraph oder Subgraph von G = (V, E), geschrieben $H \subseteq G$, wenn $V' \subseteq V$ und $E' \subseteq E$.

► Ein Subgraph H = (V', E') von G = (V, E) heißt aufspannender Teilgraph von G, wenn V' = V.

Begriffe über Zusammenhänge

Gegeben sei

- ightharpoonup der Graph G = (V, E)
- ▶ die Folge $F = (v_1, e_1, v_2, e_2, \dots, v_n, e_n, v_{n+1})$, mit $v_1, \dots, v_{n+1} \in V$ und $e_1, \dots, e_n \in E$.

Begriffe:

- ► Gilt $e_i = \{v_i, v_{i+1}\}$ für alle i = 1, ..., n, heißt F Kantenfolge.
 - \triangleright v_1 heißt Anfangsknoten, v_{n+1} heißt Endknoten.
 - F ist geschlossen, gdw. $v_1 = v_{n+1}$. Ansonsten ist F offen.
 - Die Länge der Kantenfolge beträgt *n*.
- F heißt Kantenzug oder Weg, gdw. F eine Kantenfolge ist, deren Kanten alle verschieden sind.

Begriffe über Zusammenhänge

Gegeben sei

- ightharpoonup der Graph G = (V, E)
- ▶ die Folge $F = (v_1, e_1, v_2, e_2, \dots, v_n, e_n, v_{n+1})$, mit $v_1, \dots, v_{n+1} \in V$ und $e_1, \dots, e_n \in E$.

Begriffe:

- ► *F* heißt Pfad, gdw. *F* ein offener Kantenzug ist, dessen Knoten alle verschieden sind.
- ► F heißt Kreis, gdw. F ein geschlossener Kantenzug ist, dessen Knoten mit Ausnahme von Anfangs- und Endknoten verschieden sind.
- F heißt Zyklus, gdw. F ein geschlossener Kantenzug ist.

Zusammenhänge und Komponenten

► Ein Graph ist zusammenhängend, gdw. wenn jedes Knotenpaar durch eine Kantenfolge verbunden ist.

Ein Teilgraph ist eine Zusammenhangskomponente oder Komponente, gdw. es sich um einen maximalen zusammenhängenden Teilgraph handelt.

► Ein Graph ist ein Baum, gdw. es sich um einen verbundenen, azyklischen Graphen handelt.

Vollständigkeiten

- Ein Graph ist vollständig, gdw. wenn jedes Knotenpaar durch eine Kante verbunden ist. Ein vollständiger Graph mit n Knoten wird typischerweise mit K_n bezeichnet. Er wird auch Clique genannt.
- ► $K_{m,n} = (A \cup B, \{\{a,b\} \mid a \in A, b \in B\})$ ist ein vollständiger, bipartiter Graph.
- ▶ Ein Graph G = (V, E) ist bipartit, wenn $m, n \in \mathbb{N}$ und damit ein $K_{m,n} = (V, E')$ existieren, sodass $E \subseteq E'$.

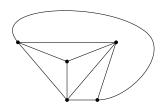
Planarer Graph

Definition: Planarer Graph

Ein Graph ist planar, wenn er in einer Ebene gezeichnet werden kann, ohne dass sich seine Kanten überschneiden.

 K_5

Planarer Graph


Definition: Planarer Graph

Ein Graph ist planar, wenn er in einer Ebene gezeichnet werden kann, ohne dass sich seine Kanten überschneiden.

Euler'scher Polyedersatz

Für jedenen zusammenhängenden, planaren Graphen G=(V,E) mit der Menge R der von den Kanten eingeschlossenen Regionen gilt:

$$|V| - |E| + |R| = 2$$

Hinweis: Die Umkehrung gilt im Allgemeinen nicht. Der Euler'sche Polyedersatz ist notwendige aber nicht hinreichende Bedingung für Planarität.

Zusammenfassung

- ► Grundbegriffe
- ► Begriffe über Zusaammenhänge
- Planarität

Prof. Dr. Tom Vierjahn

► E-Mail: tom.vierjahn@w-hs.de

Visual Computing

► Web: https://vc.w-hs.de

YouTube: Visual Computing WH

► Twitter: @VisComputingWH

Westfälische Hochschule Fachbereich Wirtschaft und Informationstechnik Campus Bocholt

Veröffentlicht unter der Creative-Commons-Lizenz Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)